skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ogonor, Buduka K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The relationship between genotype and phenotype remains an outstanding question for organism-level traits because these traits are generallycomplex. The challenge arises from complex traits being determined by a combination of multiple genes (or loci), which leads to an explosion of possible genotype–phenotype mappings. The primary techniques to resolve these mappings are genome/transcriptome-wide association studies, which are limited by their lack of causal inference and statistical power. Here, we develop an approach that combines transcriptional data endowed with causal information and a generative machine learning model designed to strengthen statistical power. Our implementation of the approach—dubbed transcriptome-wide conditional variational autoencoder (TWAVE)—includes a variational autoencoder trained on human transcriptional data, which is incorporated into an optimization framework. Given a trait phenotype, TWAVE generates expression profiles, which we dimensionally reduce by identifying independently varying generalized pathways (eigengenes). We then conduct constrained optimization to find causal gene sets that are the gene perturbations whose measured transcriptomic responses best explain trait phenotype differences. By considering several complex traits, we show that the approach identifies causal genes that cannot be detected by the primary existing techniques. Moreover, the approach identifies complex diseases caused by distinct sets of genes, meaning that the disease is polygenicandexhibits distinct subtypes driven by different genotype–phenotype mappings. We suggest that the approach will enable the design of tailored experiments to identify multigenic targets to address complex diseases. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026